Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Immunol Microbiol Infect Dis ; 109: 102181, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636298

RESUMO

Ticks and tick-borne pathogens (TTBP) pose a serious threat to animal and human health globally. Anaplasma bovis, an obligatory intracellular bacterium, is one of the more recent species of the Family Anaplasmaceae to be formally described. Owing to its diminutive size, microscopic detection presents a formidable challenge, leading to it being overlooked in laboratory settings lacking advanced equipment or resources, as observed in various regions, including Thailand. This study aimed to undertake a genetic analysis of A. bovis and determine its prevalence in goats and ticks utilizing three genetic markers (16S rRNA, gltA, groEL). A total of 601 goat blood and 118 tick samples were collected from 12 sampling sites throughout Thailand. Two tick species, Haemaphysalis bispinosa (n = 109), and Rhipicephalus microplus (n = 9) were identified. The results herein showed that 13.8 % (83/601) of goats at several farms and 5 % (1/20) of ticks were infected with A. bovis. Among infected ticks, A. bovis and an uncultured Anaplasma sp. which are closely related to A. phagocytophilum-like 1, were detected in each of H. bispinosa ticks. The remaining R. microplus ticks tested positive for the Anaplasma genus. A nucleotide sequence type network showed that A. bovis originated from Nan and Narathiwat were positioned within the same cluster and closely related to China isolates. This observation suggests the potential dispersal of A. bovis over considerable distances, likely facilitated by activities such as live animal trade or the transportation of infected ticks via migratory birds. The authors believe that the findings from this study will provide valuable information about TTBP in animals.

2.
Acta Trop ; 252: 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387771

RESUMO

Although 'Candidatus Mycoplasma haematomacacae' (formerly known as 'Candidatus Mycoplasma haemomacaque') has been reported on extensively in macaques from Thailand, the USA, Japan, and Brazil, its genetic characterization has primarily been restricted to the 16S rRNA sequences with no exploration on multi-locus sequence analysis. The primary goal of this study was to characterize 'Ca. M. haematomacacae' among Thai macaques based on multiple genetic markers. Between April 2018 and November 2021, blood samples were taken from 580 free-ranging macaques (560 Macaca fascicularis and 20 Macaca nemestrina) in 15 locations encompassing 10 provinces throughout Thailand. Using the conventional PCR assay targeting the 16S ribosomal RNA (16S rRNA) gene, 338 out of 580 macaques (58.27 %) tested hemoplasma-positive. Of these, 40 positive samples were further subjected to DNA sequencing, and all were identified as 'Ca. M. haematomacacae'. Subsequently, the partial nucleotide sequences of 23S ribosomal RNA (23S rRNA) and RNase P RNA (rnpB) genes of this particular hemoplasma species were amplified through nested PCR assay. The analysis of multi-locus genetic markers revealed that the 23S rRNA and rnpB sequences exhibited higher levels of genetic diversity than the 16S rRNA sequences. Furthermore, the 16S rRNA analyses demonstrated that 'Ca. M. haematomacacae' infecting Old World monkeys (Macaca spp.) was most closely related to hemotropic Mycoplasma spp. in black-capped capuchins (Sapajus apella) and Marcgrave's capuchins (Sapajus flavius) from Brazil, as well as establishing a common ancestor clade with hemotropic Mycoplasma spp. from the Neotropical bats in Belize and Peru and an Old World bat in Spain. The 23S rRNA analyses likewise evidenced that 'Ca. M. haematomacacae' formed a sister clade with hemotropic Mycoplasma spp. in Neotropical bats from Belize and Panama. Thus, the present findings, based on multi-locus sequence analysis, suggest a potential origin of 'Ca. M. haematomacacae' from Neotropical and Old World bats. To the best of the authors' knowledge, this study provided the largest dataset so far of multi-locus genetic sequences of 'Ca. M. haematomacacae' isolated from Thai macaques and enhanced the accuracy of phylogenetic analyses, providing insights into their origins among hemotropic Mycoplasma spp. discovered worldwide.


Assuntos
Quirópteros , Infecções por Mycoplasma , Mycoplasma , Animais , RNA Ribossômico 16S/genética , Infecções por Mycoplasma/veterinária , Tailândia , Macaca , RNA Ribossômico 23S/genética , Filogenia , Marcadores Genéticos , Análise de Sequência de DNA , DNA Bacteriano/genética
3.
Sci Rep ; 13(1): 20258, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985797

RESUMO

In recent phylogenetic studies, bat Polychromophilus and ungulate Plasmodium, two relatively understudied haemosporidian parasites within the Apicomplexa phylum, have often been overlooked. Instead, the focus has been primarily on haemosporidian parasites in primates, rodents, and birds. Several phylogenetic analyses of bat Polychromophilus have relied on limited datasets and short informative DNA sequences. As a result of these inherent limitations, the substantiation of their evolutionary stance has encountered a diminished degree of robust validation. This study successfully obtained complete mitochondrial genome sequences from 11 Polychromophilus parasites originating from Hipposideros gentilis and Myotis siligoensis bats for the first time. Additionally, the authors have sequenced the apicoplast caseinolytic protease C genes from Polychromophilus murinus and a potentially new Polychromophilus species. These mitochondrial genomes range in length from 5994 to 6001 bp and consist of three protein-coding genes (PCGs), seven small subunit ribosomal RNA genes (SSU rRNA), 12 large subunit ribosomal RNA genes (LSU rRNA), and seven miscellaneous RNA genes. Phylogenetic analyses using Bayesian Inference and Maximum Likelihood methods indicated robust support for the grouping of ungulate Plasmodium and bat Polychromophilus in a single clade separate from other Plasmodium spp., confirming previous reports, albeit with stronger evidence in this study. The divergence between Polychromophilus in bats and Plasmodium in ungulates occurred approximately 29.61 to 55.77 million years ago (Mya), with a node age estimated at 40.63 Mya. These findings highlight that the genus Plasmodium, which includes species found in ungulates, birds, reptiles, and other mammals, does not form a monophyletic group. By incorporating Polychromophilus in bats and Plasmodium in ungulates, this study contributes significantly to understanding the phylogenetic relationships within the Haemosporida order. It provides valuable insights into the evolutionary history and interconnections among these diverse parasites, thereby expanding knowledge in this field.


Assuntos
Quirópteros , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Animais , Quirópteros/genética , Filogenia , Teorema de Bayes , Plasmodium/genética , Mamíferos/genética , Haemosporida/genética , Parasitos/genética , Roedores/genética , Primatas/genética
4.
Acta Trop ; 248: 107030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742788

RESUMO

Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.


Assuntos
Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Macaca fascicularis/parasitologia , Tailândia/epidemiologia , Filogenia , Malária/epidemiologia , Malária/veterinária , Malária/parasitologia , Plasmodium knowlesi/genética , Malásia/epidemiologia
5.
Med Vet Entomol ; 37(2): 381-395, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598082

RESUMO

Despite the fact that over a 100 anopheline mosquito species have been identified as human malaria vectors, little is known about ungulate malaria vectors. Consequently, we focused on investigating the bionomics and genetic characterizations of anopheline mosquitoes in goat malaria-endemic regions. We also attempted to screen for ungulate malaria potential vectors. A total of 1019 female anopheline mosquitoes were collected from six goat farms in four provinces of Thailand from 2020 to 2021. Mosquitoes were morphologically identified and subsequently confirmed using the mitochondrial DNA barcoding region-cytochrome oxidase c subunit I (MtDNA-COI), mitochondrial DNA-cytochrome c oxidase subunit II (MtDNA-COII), and ribosomal DNA internal transcribed spacer 2 (rDNA-ITS2) sequences. The current study reveals the genetic characteristics and distribution of nine mosquito species within the Anopheles and Cellia subgenera. Four dominant species, including Anopheles peditaeniatus, Anopheles subpictus, Anopheles vagus, and Anopheles aconitus exhibited significant intraspecific gene flow within their corresponding species. Although malaria parasites were not found in 126 mosquito pools, meaning more investigation is necessary, the current study adds to the existing DNA barcoding data collection and improves the current understanding of the genetic structure and distribution of anopheline mosquito species, which could be useful for effective control of mosquito-borne diseases.


Assuntos
Anopheles , Doenças das Cabras , Malária , Feminino , Humanos , Animais , Cabras/genética , Tailândia , Mosquitos Vetores/genética , Malária/epidemiologia , Malária/veterinária , Anopheles/parasitologia , DNA Mitocondrial
7.
Sci Rep ; 12(1): 5747, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388073

RESUMO

Ungulate malaria parasites and their vectors are among the least studied when compared to other medically important species. As a result, a thorough understanding of ungulate malaria parasites, hosts, and mosquito vectors has been lacking, necessitating additional research efforts. This study aimed to identify the vector(s) of Plasmodium bubalis. A total of 187 female mosquitoes (133 Anopheles spp., 24 Culex spp., 24 Aedes spp., and 6 Mansonia spp. collected from a buffalo farm in Thailand where concurrently collected water buffalo samples were examined and we found only Anopheles spp. samples were P. bubalis positive. Molecular identification of anopheline mosquito species was conducted by sequencing of the PCR products targeting cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 2 (cox2), and internal transcribed spacer 2 (ITS2) markers. We observed 5 distinct groups of anopheline mosquitoes: Barbirostris, Hyrcanus, Ludlowae, Funestus, and Jamesii groups. The Barbirostris group (Anopheles wejchoochotei or Anopheles campestris) and the Hyrcanus group (Anopheles peditaeniatus) were positive for P. bubalis. Thus, for the first time, our study implicated these anopheline mosquito species as probable vectors of P. bubalis in Thailand.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/genética , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Malária/parasitologia , Plasmodium/genética , Tailândia
8.
Ticks Tick Borne Dis ; 13(3): 101938, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35299078

RESUMO

Ticks and tick-borne pathogens (TTBPs) pose a serious economic threat to ruminant production worldwide. Despite this, investigations focused on goats remain limited compared to those for pathogens infecting cattle. We carried out PCR-based surveys and phylogenetic analyses to examine TTBPs from 6 provinces in Thailand between January 2016 and June 2020. A total of 93 tick samples were collected as well as 969 blood samples from goats. All ticks were morphologically identified as Rhipicephalus microplus and confirmed for species based on 16S rRNA and cox1 gene sequences. The mitochondrial cox1 sequences in the present study were clustered into clades A and C. The overall infection rates of Anaplasma spp., piroplasmids, and co-infections of both parasites in goats were 13.5% (131/969), 2.7% (24/880), and 0.7% (7/969), respectively. We observed no statistically significant association between TTBP infections and age or sex. However, TTBP infections and the rainy season were linked (p < 0.05). Anaplasma bovis, Anaplasma marginale, and Anaplasma ovis were detected for the first time in goats in the country using primers targeting the chaperonin GroEL (groEL), major surface protein 2 (msp2), and major surface protein 4 (msp4) genes, while Anaplasma capra and Anaplasma phagocytophilum were not detected. Anaplasma bovis, A. marginale, and A. ovis isolates were clustered in a subclade that differed from the strains found in other countries. Among piroplasmids, only Theileria luwenshuni was detected in the current investigation. This work will add to the current understanding regarding the prevalence, genetic diversity, and genetic relationships of A. bovis, A. marginale, A. ovis, and T. luwenshuni among global isolates and those in Thailand.


Assuntos
Anaplasmose , Parasitos , Rhipicephalus , Anaplasmose/epidemiologia , Animais , Bovinos , Cabras/parasitologia , Parasitos/genética , Filogenia , RNA Ribossômico 16S/genética , Rhipicephalus/genética , Ovinos , Tailândia/epidemiologia
9.
Parasitology ; 149(5): 654-666, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115070

RESUMO

The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.


Assuntos
Quirópteros , Trypanosoma cruzi , Trypanosoma , Trypanosomatina , Animais , Quirópteros/parasitologia , DNA de Protozoário/genética , Filogenia , Tailândia/epidemiologia , Trypanosoma cruzi/genética , Trypanosomatina/genética
10.
Transbound Emerg Dis ; 69(4): e717-e733, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34755483

RESUMO

The study of bacterial zoonoses has been under-pursued despite the fact that bacteria cause the majority of zoonotic diseases, of which 70% have a wildlife origin. More Bartonella species are being identified as the cause of human diseases, and several of them have been linked to domestic and wild animals. Bats are outstanding reservoirs for Bartonella species because of their wide distribution, mobility, roosting behaviour, and long life span. Here, we carried out a PCR-based survey on bats that were collected from 19 sampling sites in eight provinces of Thailand from February 2018 to April 2021. Bartonella infection was investigated in a total of 459 bats that belong to 24 different bat species (21 species of which had never been previously studied in Thailand). PCR diagnostics revealed that 115 out of 459 (25.5%) blood samples tested positive for Bartonella. The nucleotide identities of the Bartonella 16S rRNA sequences in this study were between 95.78-99.66% identical to those of known zoonotic species (Bartonella ancashensis, Bartonella henselae, Bartonella bacilliformis and Bartonella australis) as well as to an unidentified Bartonella spp. In addition, the citrate synthase (gltA) and RNA polymerase-beta subunit (rpoB) genes of Bartonella were sequenced and analyzed in positive samples. The gltA and rpoB gene sequences from Hipposideros gentilis and Rhinolophus coelophyllus bat samples showed low nucleotide identity (<95%) compared to those of the currently deposited sequences in the GenBank database, indicating the possibility of new Bartonella species. The phylogenetic inference and genetic diversity were generated and indicated a close relationship with other Bartonella species previously discovered in Asian bats. Overall, the current study demonstrates the primary evidence pointing to a potential novel Bartonella species in bats. This discovery also contributes to our current understanding of the geographical distribution, genetic diversity, and host ranges of bat-related Bartonella.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Quirópteros/microbiologia , Variação Genética , Humanos , Nucleotídeos , Filogenia , RNA Ribossômico 16S , Tailândia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...